Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38621188

RESUMO

We thoroughly investigated the anharmonic lattice dynamics and microscopic mechanisms of the thermal and electronic transport characteristics in orthorhombic o-CsCu5S3 at the atomic level. Taking into account the phonon energy shifts and the wave-like tunneling phonon channel, we predict an ultralow κL of 0.42 w/mK at 300 K with an extremely weak temperature dependence following ∼T-0.33. These findings agree well with experimental values along with the parallel to the Bridgman growth direction. The κL in o-CsCu5S3 is suppressed down to the amorphous limit, primarily due to the unconventional Cu-S bonding induced by the p-d hybridization antibonding state coupled with the stochastic oscillation of Cs atoms. The nonstandard temperature dependence of κL can be traced back to the critical or dominant role of wave-like tunneling of phonon contributions in thermal transport. Moreover, the p-d hybridization of Cu(3)-S bonding results in the formation of a valence band with "pudding-mold" and high-degeneracy valleys, ensuring highly efficient electron transport characteristics. By properly adjusting the carrier concentration, excellent thermoelectric performance is achieved with a maximum thermoelectric conversion efficiency of 18.4% observed at 800 K in p-type o-CsCu5S3. Our work not only elucidates the anomalous electronic and thermal transport behavior in the copper-based chalcogenide o-CsCu5S3 but also provides insights for manipulating its thermal and electronic properties for potential thermoelectric applications.

2.
Addict Biol ; 29(3): e13382, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488467

RESUMO

Methamphetamine (METH) is a highly addictive psycho-stimulant that induces addictive behaviour by stimulating increased dopamine release in the nucleus accumbens (NAc). The sarco/endoplasmic reticulum calcium ion transport ATPases (SERCA or ATP2A) is a calcium ion (Ca2+) pump in the endoplasmic reticulum (ER) membrane. SERCA2b is a SERCA subtype mainly distributed in the central nervous system. This study used conditioned place preference (CPP), a translational drug reward model, to observe the effects of SERCA and SERCA2b on METH-CPP in mice. Result suggested that the activity of SERCA was significantly decreased in NAc after METH-CPP. Intraperitoneal SERCA agonist CDN1163 injection or bilateral CDN1163 microinjection in the NAc inhibited METH-CPP formation. SERCA2b overexpression by the Adeno-associated virus can reduce the DA release of NAc and inhibit METH-CPP formation. Although microinjection of SERCA inhibitor thapsigargin in the bilateral NAc did not significantly aggravate METH-CPP, interference with SERCA2b expression in NAc by adeno-associated virus increased DA release and promoted METH-CPP formation. METH reduced the SERCA ability to transport Ca2+ into the ER in SHSY5Y cells in vitro, which was reversed by CDN1163. This study revealed that METH dysregulates intracellular calcium balance by downregulating SERCA2b function, increasing DA release in NAc and inducing METH-CPP formation. Drugs that target SERCA2b may have the potential to treat METH addiction.


Assuntos
Benzamidas , Estimulantes do Sistema Nervoso Central , Metanfetamina , Camundongos , Animais , Metanfetamina/farmacologia , Metanfetamina/metabolismo , Núcleo Accumbens , Cálcio/metabolismo , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/metabolismo
3.
Phys Chem Chem Phys ; 26(8): 6774-6781, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323593

RESUMO

High lattice thermal conductivity stemming from the intrinsically ordered crystal and strong interatomic bonds tends to be seen as the bottleneck for achieving excellent thermoelectric properties in full-Heusler (FH) semiconductors. In this work, we propose a novel Li-based FH compound Li2TlSb by substituting one Li atom with a Tl atom in Li3Sb. Then we systematically investigated its transport and thermoelectric properties based on self-consistent phonon (SCP) theory, electron-phonon scattering, and the Boltzmann transport equation. The theoretical calculation confirms that it exhibits outstanding mechanical properties and extreme environment adaptability. Surprisingly, the combination of an unexpectedly high spatial degeneracy and light electron dispersion at valence bands results in a high power factor in p-type systems. Additionally, the rattling behavior governed by the Tl atom and resonant bonding is responsible for ultra-low lattice thermal conductivity with 0.79 W m-1 K-1 at room temperature. Finally, a maximum p-type ZT value of 1.77 at 300 K has been achieved, which surpasses those of most of the traditional thermoelectric (TE) materials. Our results demonstrate that Li2TlSb serves as a potential candidate for room-temperature thermoelectric materials and simultaneously provides new insights for rationally designing novel FH materials in the future.

4.
Biochem Genet ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243003

RESUMO

Cystatin SN (CST1) appears to have pro-tumor effects in breast cancer (BC) and is involved in ferroptosis; however, there is no report on the regulation of ferroptosis by CST1 for BC development. The purpose of this study is to investigate the functions and mechanisms operated by CST1 in BC development and ferroptosis. Transcription Factor Activator Protein 2γ (TFAP2C) and CST1 levels in BC tissues and estrogen receptor (ER)+ cells were quantified by RT-qPCR and western blotting. After knocking down TFAP2C and CST1 expression in MCF7 and T47D cells, the proliferation, colony formation ability, apoptosis, and cell cycle were assessed. Ferroptosis was verified by detecting glutathione peroxidase 4 (GPX4) and 4-hydroxy-2-nonenal (4HNE) levels. The kits were used to test Fe2+, reactive oxygen species, malondialdehyde, and glutathione levels, and ultrastructure of mitochondria was observed through transmission electron microscope. Dual-luciferase reporter assay and chromatin immunoprecipitation test were carried out to investigate the interaction of TFAP2C and CST1. A transplanted tumor model was established to explore the function of TFAP2C in tumorigenesis by quantifying TFAP2C, CST1, Ki67, and GPX4 levels through western blotting and immunochemistry after silencing TFAP2C. TFAP2C and CST1 were predominantly expressed in BC cells. Silencing of TFAP2C or CST1 expression suppressed ER+ BC cell proliferation, promoted apoptosis and ferroptosis, and blocked cell cycle transition from G1 phase to S phase. TFAP2C knockdown in transplanted tumors inhibited tumor growth and GPX4 level. Upregulating CST1 nullified the anti-tumor effects of TFAP2C knockdown and TFAP2C promoted CST1 expression through transcription activation. TFAP2C activates CST1 transcription to facilitate BC development and block ferroptosis.

5.
mSystems ; 9(2): e0095323, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193712

RESUMO

Transplant of donor microbiota can significantly alter the structure of the host's intestinal microbiota and alleviate early weaning stress. Screening for alternative-resistant products by transplanting fecal bacteria from healthy lambs is a current research trend in the livestock industry. In the present study, fecal microbiota transplantation was performed in lambs with diarrhea during early weaning. The transplanted fecal microbiota greatly reduced the diarrhea and serum inflammatory factor levels caused by early weaning. Transcriptome sequencing revealed that fecal microbiota transplantation alleviated colonic inflammation and increased the expression of colonic ion transport proteins. In addition, the levels of Streptococcus, Enterococcus, and Escherichia Shigella decreased in the jejunum, cecum, and colon of the lambs; meanwhile, the levels of Bifidobacterium and multiple secondary bile acids, such as ursodeoxycholic acid, increased in the colon. Furthermore, the abundance of Bifidobacterium was significantly negatively correlated with the diarrhea index. The fecal microbiota transplantation reshaped the intestinal microbiota of early-weaned lambs, protected the intestinal physiology and immune barrier, and reduced weaning stress. In addition to making available bacteriological products for controlling intestinal inflammation in young lambs, this study offers a theoretical framework and technical system for the mechanisms by which microbiota transplantation regulates intestinal health in young lambs.IMPORTANCEBefore weaning, the digestive system of lambs is not well developed; hence, its resistance to infectious diseases is weak. Under intensive feeding systems, lambs can easily be stressed and the risk of bacterial infection is high, which causes diarrhea, which in turn may cause mortality and significant economic losses to the livestock industry. With the elimination of antibiotics in animal feed, the incidence of mortality due to intestinal illnesses in lambs has gradually increased. There are several types of probiotics routinely used in young animals, but the effects and processes of their usage have only been assessed in monogastric animals. The lack of data on ruminants, particularly sheep, has severely hampered the process of efficient and healthy sheep breeding. Therefore, there is an urgent need to identify effective and safe functional supplements for lambs.


Assuntos
Suplementos Nutricionais , Multiômica , Animais , Ovinos , Desmame , Diarreia/terapia , Inflamação
6.
J Wildl Dis ; 60(1): 232-235, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972637

RESUMO

An adult Crested Ibis (Nipponia nippon) was found moribund in the Qinling area of China. Postmortem examination and histopathological analysis revealed lung inflammation and multi-organ hemorrhage. Bacterial isolation and whole-genome sequencing confirmed Edwardsiella tarda infection.


Assuntos
Edwardsiella tarda , Sepse , Animais , Aves/microbiologia , Sepse/veterinária , China
7.
Water Res ; 250: 120991, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113596

RESUMO

Under the influence of intensive human activities and global climate change, the sources and compositions of dissolved organic matter (DOM) in the eastern plain lake (EPL) region in China have fluctuated sharply. It has been successfully proven that the humification index (HIX), which can be derived from three-dimensional excitation-emission matrix fluorescence spectroscopy, can be an effective proxy for the sources and compositions of DOM. Therefore, combined with remote sensing technology, the sources and compositions of DOM can be tracked on a large scale by associating the HIX with optically active components. Here, we proposed a novel HIX remote sensing retrieval (IRHIX) model suitable for Landsat series sensors based on the comprehensive analysis of the covariation mechanism between HIX and optically active components in different water types. The validation results showed that the model runs well on the independent validation dataset and the satellite-ground synchronous sampling dataset, with an uncertainty ranging from 30.85 % to 36.92 % (average ± standard deviation = 33.6 % ± 3.07 %). The image-derived HIX revealed substantial spatiotemporal variations in the sources and compositions of DOM in 474 lakes in the EPL during 1986-2021. Subsequently, we obtained three long-term change modes of the HIX trend, namely, significant decline, gentle change, and significant rise, accounting for 74.68 %, 17.09 %, and 8.23 % of the lake number, respectively. The driving factor analysis showed that human activities had the most extensive influence on the DOM humification level. In addition, we also found that the HIX increased slightly with increasing lake area (R2 = 0.07, P < 0.05) or significantly with decreasing trophic state (R2 = 0.83, P < 0.05). Our results provide a new exploration for the effective acquisition of long-term dynamic information about the sources and compositions of DOM in inland lakes and provide important support for lake water quality management and restoration.


Assuntos
Matéria Orgânica Dissolvida , Qualidade da Água , Humanos , Lagos/química , China , Espectrometria de Fluorescência/métodos
8.
J Subst Use Addict Treat ; 156: 209189, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866441

RESUMO

INTRODUCTION: Methamphetamine use disorder (MUD) can cause impulsive behavior, anxiety, and depression. Stimulation of the left dorsolateral prefrontal cortex in MUD patients by intermittent theta burst repetitive transcranial magnetic stimulation (iTBS-rTMS) is effective in reducing cravings, impulsive behavior, anxiety, and depression. The purpose of this study was to explore whether these psychological factors helped to predict MUD patients' responses to iTBS-rTMS treatment. METHODS: Fifty MUD patients and sixty healthy subjects matched for general conditions were used as study subjects. The study randomly divided MUD patients into iTBS-rTMS and sham stimulation groups and received 20 sessions of real or sham iTBS-rTMS treatment, and the study collected cue-related evoked craving data before and after treatment. All subjects completed the Barratt Impulsiveness Scale (BIS-11), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS). RESULTS: The MUD patients showed significantly higher levels of impulsivity, anxiety, and depression than the healthy subjects. The MUD patients who received the real treatment had significantly lower impulsivity, anxiety, and depression scores, and better treatment effects on cravings than the sham stimulation group. The Spearman rank correlation and stepwise multiple regression analyses showed that the baseline BIS-11 and the reduction rate (RR) of BIS-11 and RR of SDS were positively correlated with the decrease in cravings in the iTBS-rTMS group. ROC curve analysis showed that RR of SDS (AUC = 91.6 %; 95 % CI = 0.804-1.000) had predictive power to iTBS- rTMS therapeutic efficacy, the cutoff value is 15.102 %. CONCLUSIONS: iTBS-rTMS had a good therapeutic effect in MUD patients and the baseline impulsivity, the improved depression and impulsivity were associated with therapeutic effect of iTBS-rTMS. The improved depression had the potential to predict the efficacy of the iTBS-rTMS modality for MUD treatment.


Assuntos
Depressão , Estimulação Magnética Transcraniana , Humanos , Ansiedade/terapia , Depressão/terapia , Comportamento Impulsivo , Ritmo Teta/fisiologia
9.
BMC Psychiatry ; 23(1): 921, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066462

RESUMO

BACKGROUND: Globally, Internet is a recognized form of leisure, but there are growing apprehensions about the increasing number of individuals developing an addiction to it. Recent research has focused on social issues associated with internet addiction (IA). However, the treatment of IA is currently unclear. This study aimed to explore the relationship between IA treatment outcomes and different intervention strategies through systematic review and data analysis of patients who received different intervention modes. METHODS: A meta-analysis was conducted using RevMan 5.4 and Stata 14.2 on 57 literature research data from five Chinese and English databases, PubMed, Embase, Web of Science, Wanfang and CNKI. RESULT: A total of 57 randomized controlled trials (RCTs) were included in this network meta-analysis involving 3538 IA patients and 13 different interventions. The network meta-analysis results demonstrated that the top four interventions were: rTMS + CBT, drug + others, rTMS, and electro-acupuncture + CBT. CONCLUSION: Our study indicated that comprehensive therapy had an optimal therapeutic effect on IA patients and rTMS + CBT ranked first among all therapeutic indicators of intervention, indicating optimal clinical effectiveness.


Assuntos
Terapia por Acupuntura , Comportamento Aditivo , Humanos , Metanálise em Rede , Transtorno de Adição à Internet , Comportamento Aditivo/terapia , Terapia por Acupuntura/métodos , Projetos de Pesquisa
10.
Psychol Res Behav Manag ; 16: 4353-4365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908679

RESUMO

Objective: Learner dependence on short videos has many pitfalls for learning outcomes, but the negative effects of excessive short video use have been little discussed in the learning psychology literature. Therefore, this study investigated the effects of excessive short video use on anxiety, depression, prospective memory, and academically delayed gratification (ADOG) in relation to online gaming-related behaviours, and explored the possible mechanisms by which excessive online gaming and short video use may lead to decreased ADOG, to expand our understanding of excessive short video use. Methods: Based on the whole class random sampling method, a questionnaire survey was conducted among college students in Northern Anhui, China from May 7 to July 27, 2022. The questionnaires included the Generalized Anxiety Disorder Scale (GAD-7), Patient Health Questionnaire Scale (PHQ-9), Prospective and Retrospective Memory (PRM) Questionnaire, and ADOG Scale. Results: A total of 1016 participants completed the survey. The study found that of all the internet behaviors, 20.8% of the college students mainly played online games, 43.9% mainly played short videos, and 35.3% conducted other online behaviors. When compared with other internet behaviors, online gaming and short video behaviors can cause more serious anxiety/depression and worse PRM and ADOG scores. As time spent playing online games and short videos increased, anxiety and depression became worse, and the scores for PRM and ADOG also declined. Anxiety, depression, and PRM mediate the relationship between time spent on online gaming/short videos and ADOG. Conclusion: Excessive short videos behaviour may produce the same psychological problems and learning problems as online gaming disorder. Excessive short video and online gaming behaviors may affect ADOG performance through anxiety, depression, and prospective memory. These findings could be used as a basis for future studies on the improvement of ADOG.

11.
Burns Trauma ; 11: tkad023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026444

RESUMO

Background: Sepsis is a common severe complication in major burn victims and is characterized by a dysregulated systemic response to inflammation. YTH domain family 2 (YTHDF2), a well-studied N6-methyladenosine (m6A) reader that specifically recognizes and binds to m6A-modified transcripts to mediate their degradation, is connected to pathogenic and physiological processes in eukaryotes, but its effect on sepsis is still unknown. We aimed to discover the effects and mechanisms of YTHDF2 in sepsis. Methods: Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot analyses were used to measure the expression of YTHDF2, the interleukin 6 receptor (IL-6R), high-mobility group box-1 (HMGB1), Janus kinase 2 (JAK2) and signal transducer and activator of transcription 1 (STAT1) under different in vitro conditions. Enzyme-linked immunosorbent assays were utilized to evaluate the expression of HMGB1, IL-6, IL-1ß and tumor necrosis factor-α. To confirm that YTHDF2 specifically targets IL-6R mRNA, RNA immunoprecipitation and dual-luciferase reporter assays were performed. Finally, we utilized a mouse model of lipopolysaccharide (LPS)-induced sepsis to verify the effects of YTHDF2 in vivo. Results: According to our findings, YTHDF2 was expressed at a low level in peripheral blood mononuclear cells from septic mice and patients as well as in LPS-induced RAW264.7 cells. Overexpression of YTHDF2 alleviated the inflammatory response by inhibiting HMGB1 release and JAK2/STAT1 signalling in LPS-stimulated cells. Mechanistically, YTHDF2 suppressed JAK2/STAT1 signalling by directly recognizing the m6A-modified site in IL-6R and decreasing the stability of IL-6R mRNA, thereby inhibiting HMGB1 release. In vivo experiments showed that YTHDF2 played a protective role in septic mice by suppressing the IL-6R/JAK2/STAT1/HMGB1 axis. Conclusions: In summary, these findings demonstrate that YTHDF2 plays an essential role as an inhibitor of inflammation to reduce the release of HMGB1 by inhibiting the IL-6R/JAK2/STAT1 pathway, indicating that YTHDF2 is a novel target for therapeutic interventions in sepsis.

12.
Future Med Chem ; 15(20): 1823-1841, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37902028

RESUMO

Aim: Based on a multitarget design strategy, a series of novel indanone-1-benzyl-1,2,3,6-tetrahydropyridin hybrids were identified for the potential treatment of Alzheimer's disease (AD). Results: These compounds exhibited significant inhibitory activities against acetylcholinesterase (AChE) and moderate inhibitory activities toward monoamine oxidase B (MAO-B). The optimal compound A1 possessed excellent dual AChE/MAO-B inhibition both in terms of potency (AChE: IC50 = 0.054 ± 0.004 µM; MAO-B: IC50 = 3.25 ± 0.20 µM), moderate inhibitory effects on self-mediated amyloid-ß (Aß) aggregation and antioxidant activity. In addition, compound A1 exhibited low neurotoxicity. More importantly, compound A1 showed significant cognitive and spatial memory improvements in the scopolamine-induced AD mouse model. Conclusion: All results suggest that compound A1 may become a promising lead of anti-AD drug for further development.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Animais , Camundongos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Indanos/farmacologia , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase , Relação Estrutura-Atividade
13.
Iran J Basic Med Sci ; 26(11): 1342-1349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885995

RESUMO

Objectives: Tumor metastasis is the leading cause of death in breast cancer (BC) patients and is a complicated process. Mitochondrial calcium uniporter (MCU), a selective channel responsible for mitochondrial Ca2+ uptake, has been reported to be associated with tumorigenesis and metastasis. The molecular mechanisms of MCU contributing to the migration of BC cells are partially understood. This study investigated the role of MCU in BC cell metastasis and explored the underlying mechanism of MCU-mediated autophagy in BC cell migration. Materials and Methods: The Kaplan-Meier plotter database was used to analyze the prognostic value of MCU mRNA expression. Western blotting was used to examine the expression level of MCU in 4 paired BC and adjacent normal tissues. The cellular migration capability of BC was measured by transwell migration assay and wound healing assay. Western blotting and reverse transcription-quantitative polymerase chain reaction were performed to detect the expression levels of autophagy-related markers. The effects of MCU activation or inhibition on TFEB nuclear translocation in BC cells were detected by laser scanning confocal microscopy. Results: Expression of MCU was found to be negatively correlated with BC patient prognosis in the Kaplan-Meier plotter database. Compared with the adjacent normal tissues, MCU was markedly up-regulated in the BC tissues. MCU overexpression promoted cellular migration, activated autophagy, and increased TFEB nuclear translocation in BC cells, whereas its knockdown produced the opposite effects. Conclusion: MCU activates TFEB-driven autophagy to promote BC cell metastasis and provides a potential novel therapeutic target for BC clinical intervention.

14.
Appl Microbiol Biotechnol ; 107(23): 7287-7299, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750915

RESUMO

Enzyme preparation is one of the widely used additives in ruminant production. However, a suitable method of adding compound enzyme preparation (CEP) to the feeds is still lacking. This study investigated the effect of adding CEP on the diet of goats. Twenty 4-month-old Boer goats were randomly assigned to four groups. The dietary treatments contained different CEPs (Saccharomyces cerevisiae cells, cellulase, xylanase, ß-glucanase amylase, and protease) at the concentrations of 0, 0.25, 0.50, and 0.75 g/kg of feed provided for a period of 56 days. Adding CEP in goat feed significantly increased average daily gain (ADG) during the entire test period. The oxidative indices, hormones, and immune cells did not differ significantly among the different groups. CEP significantly increased the content of total volatile fatty acids measured at the end of the experiment on day 56 of the final normal feeding phase. 16S rDNA sequencing revealed that CEP increased the abundance of Ruminococcaceae in the rumen and g__norank_f__Eubacterium_coprostanoligenes_group, Oscillibacter g__unclassified_f__Ruminococcaceae, and g__unclassified_o__Oscillospirales in fecal matter collected on day 56 of the final normal feeding phase. However, CEP decreased the abundance of unclassified_f__Lachnospiraceae, norank_f__UCG-010, Butyrivibrio, and Saccharofermentans in the rumen. The abundance of Ruminococcaceae in the rumen and propionic acid was positively correlated with ADG. Function prediction showed that carbon fixation, carbohydrate digestion and absorption pathways were significantly enriched in rumen microbiota in the treatment group. The findings indicated that supplementation with 0.5 g CEP/kg of feed for 56 days significantly improves the production performance of goats without adverse health effects. KEY POINTS: • Feeding with compound enzyme preparation for 56 days significantly improved the productive performance but did not affect the antioxidative capacity and immunity of goats. • Supplementing compound enzyme preparation in diet could increase the relative abundance of Ruminococcus to increase the levels of short-chain fatty acids produced. • The most appropriate supplemental amount of compound enzyme preparation per kilogram of the diet was 0.5 g.


Assuntos
Cabras , Microbiota , Animais , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Fermentação , Rúmen/metabolismo
15.
J Med Chem ; 66(16): 10917-10933, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37535706

RESUMO

Targeted protein degradation (TPD) technologies have catalyzed a paradigm shift in therapeutic strategies and offer innovative avenues for drug design. Hydrophobic tags (HyTs) are bifunctional TPD molecules consisting of a ″lipophilic small-molecule tags″ group and a small-molecule ligand for the target protein. Despite the vast potential of HyTs, they have received relatively limited attention as a promising frontier. Leveraging their lower molecular weight and reduced numbers of hydrogen bond donors/acceptors (HBDs/HBAs) in comparison with proteolysis-targeting chimeras (PROTACs), HyTs present a compelling approach for enhancing druglike properties. In this Perspective, we explore the diverse range of HyT structures and their corresponding degradation mechanisms, thereby illuminating their broad applicability in targeting a diverse array of proteins, including previously elusive targets. Moreover, we scrutinize the challenges and opportunities entailed in developing this technology as a viable and fruitful strategy for drug discovery.


Assuntos
Descoberta de Drogas , Proteínas , Proteólise , Proteínas/metabolismo , Desenho de Fármacos , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
16.
World Allergy Organ J ; 16(8): 100807, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37638361

RESUMO

Background: The efficacy of allergen-specific subcutaneousimmunotherapy (SCIT) with Alt a 1 of the fungus A. alternata is still unknown. Yet, few studies compare the therapeutic effects and immunological mechanisms of Alt a 1 and A. alternata extracts. We aim to explore and compare the changes in allergic inflammation and immunological mechanisms of Alt a 1 and A. alternata in mice. Methods: Female BALB/c mice administrated recombinant Alt a 1 (rAlt a 1), native Alt a 1 (nAlt a 1), and A. alternata. Lung histology, airway hyper-reactivity (AHR), bronchoalveolar lavage fluid (BALF) cytokine levels, serum immunoglobulin responses, the expression of Bcl-6, the percentages of T follicular helper cells (Tfh), cytokine-related Tfh subtypes, regulatory B cells (Breg), and IL-10+ Breg cells were detected. Results: High-purity nAlt 1 protein was obtained. SCIT with Alt a 1 and Alternaria decreased airway and lung inflammation, including improvement of lung pathology, lower levels of AHR, reduction of total cell numbers, and IL-4 and IL-13 levels in BALF. Furthermore, Alt a 1-SCIT effectively suppressed the IgE responses, elevated IgG titers, and was superior in decreasing the expression of Bcl-6. Additionally, Alternaria-SCIT significantly decreased the expression of Tfh cells, L-4+ Tfh, and IL-5+ Tfh cells in the spleen, whereas Alt a 1 showed superior therapeutic effects in the lymph node. IL-13+ Tfh cells in these two treatment groups not being significant. IL-17A+ Tfh cells were alleviated most effectively after A. alternata-SCIT in both the spleen and lymph node. Intriguingly, IL-10+ Breg cells decreased remarkably in response to SCIT with rAlt a 1. Conclusions: Treatments with Alt a 1 and A. alternata extracts had beneficial effects on allergic inflammation. Alt a 1-SCIT resulted in prominent improvement in the immunoglobulin responses, Bcl-6, and IL-10+ Breg cells. Alternaria-SCIT was more likely to suppress the expression of Tfh and cytokine-related Tfh subtypes.

17.
Front Neurosci ; 17: 1222551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547136

RESUMO

Introduction: Numerous studies have suggested a connection between circadian rhythm and neurological disorders with cognitive and consciousness impairments in humans, yet little evidence stands for a causal relationship between circadian rhythm and the brain cortex. Methods: The top 10,000 morningness-related single-nucleotide polymorphisms of the Genome-wide association study (GWAS) summary statistics were used to filter the instrumental variables. GWAS summary statistics from the ENIGMA Consortium were used to assess the causal relationship between morningness and variates like cortical thickness (TH) or surficial area (SA) on the brain cortex. The inverse-variance weighted (IVW) and weighted median (WM) were used as the major estimates whereas MR-Egger, MR Pleiotropy RESidual Sum and Outlier, leave-one-out analysis, and funnel-plot were used for heterogeneity and pleiotropy detecting. Results: Regionally, morningness decreased SA of the rostral middle frontal gyrus with genomic control (IVW: ß = -24.916 mm, 95% CI: -47.342 mm to -2.490 mm, p = 0.029. WM: ß = -33.208 mm, 95% CI: -61.933 mm to -4.483 mm, p = 0.023. MR Egger: ß < 0) and without genomic control (IVW: ß = -24.581 mm, 95% CI: -47.552 mm to -1.609 mm, p = 0.036. WM: ß = -32.310 mm, 95% CI: -60.717 mm to -3.902 mm, p = 0.026. MR Egger: ß < 0) on a nominal significance, with no heterogeneity or no outliers. Conclusions and implications: Circadian rhythm causally affects the rostral middle frontal gyrus; this sheds new light on the potential use of MRI in disease diagnosis, revealing the significance of circadian rhythm on the progression of disease, and might also suggest a fresh therapeutic approach for disorders related to the rostral middle frontal gyrus-related.

18.
J Hazard Mater ; 459: 132080, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37499493

RESUMO

Owing to accelerated urbanisation, increased pollutants have degraded urban water quality. Timely identification and control of pollution sources enable relevant departments to effectively perform water treatment and restoration. To achieve this goal, a remote sensing identification method for urban water pollution sources applicable to unmanned aerial vehicle (UAV) hyperspectral images was established. First, seven fluorescent components were obtained through three-dimensional excitation-emission matrix fluorescence spectroscopy of dissolved organic matter (DOM) combined with parallel factor analysis. Based on the hierarchical cluster analysis of the seven fluorescence components and three spectral indices, four pollution source (PS) types were determined, namely, domestic sewage, terrestrial input, agricultural and algal, and industrial wastewater sources. Second, several water colour and optical parameters, including the absorption coefficient of chromophoric DOM at 254 nm, humification index, chlorophyll-a concentration, and hue angle, were utilised to develop an identification method with a recognition accuracy exceeding 70% for the four PSs that is suitable for UAV hyperspectral data. This study demonstrated the potential of identifying PSs by combining the fluorescence characteristics of DOM with the optical properties of water, thus expanding the application of remote sensing technologies and providing more comprehensive and reliable information for urban water quality management.

19.
FEBS Open Bio ; 13(8): 1415-1433, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423235

RESUMO

Ulcerative colitis (UC) is a recurrent inflammatory disease related to gut microbiota disorder. Metabolites and their sensors play an important role in the communication between gut microbes and their host. Our previous study revealed that G protein-coupled receptor 35 (GPR35) is a key guardian of kynurenic acid (KA) and a core element of the defense responses against gut damage. However, the mechanism remains unknown. In this study, a DSS-induced rat colitis model was established and 16S rRNA sequencing was applied to explore the influence of GPR35-mediated KA sensing on gut microbiota homeostasis. Our results demonstrated that GPR35-mediated KA sensing is a necessary component in maintaining gut barrier integrity against DSS-induced damage. Furthermore, we provide compelling evidence suggesting that GPR35-mediated KA sensing plays a crucial role in maintaining gut microbiota homeostasis, which contributes to alleviation of DSS-induced colitis. In addition, five classes (Actinobacteria, Beta-/Gamma-proteobacteria, Erysipelotrichi, and Coriobacteriia) and six genera (Corynebacterium, Allobaculum, Parabacteroides, Sutterella, Shigella, and Xenorhabdus) were identified as the marked bacterial taxa that characterized the progression and outcome of colitis and are regulated by GPR35-mediated KA sensing. Our findings highlight that GPR35-mediated KA sensing is an essential defense mechanism against disorder of gut microbiota in UC. The results provide insights into the key role of specific metabolites and their monitor in maintaining gut homeostasis.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Ratos , Animais , Colite Ulcerativa/microbiologia , Ácido Cinurênico , RNA Ribossômico 16S/genética , Colite/induzido quimicamente , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Bactérias/metabolismo
20.
Front Immunol ; 14: 1186393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275919

RESUMO

Background: Allergic airway disease (AAD) is a chronic disease characterized by airway inflammation, bronchoconstriction, and hyperresponsiveness. Although exogenous interleukin-10 (IL-10) alleviates allergic inflammation, it has a short half-life in vivo. Cell membrane-coated nanomaterials have been shown to protect therapeutic payloads and increase therapeutic efficacy. Objective: This study was aimed at investigating the efficacy of a novel macrophage-based nanoparticle drug for the treatment of house dust mite (HDM)-induced allergic airway diseases. Methods: IL-10-poly (lactic-co-glycolic acid (PLGA) nanoparticles were encapsulated in alveolar macrophage cell membranes. An allergic airway disease mouse model was established by repeated inhalation of HDM extracts. The mice were treated with free IL-10, IL-10-PLGA nanoparticles (IL10-NP), or IL-10-alveolar macrophage cell membrane-coated nanoparticles (IL10-AMNP). The therapeutic effects were evaluated by measuring airway hyperresponsiveness, lung inflammation, cytokine levels, and regulatory T cells (Treg)- T-helper 17 (Th17) cell balance. Results: Compared to free IL-10, IL10-AMNP significantly reduced airway hyperresponsiveness and T-helper 2 (Th2)/Th17 cytokines and inhibited neutrophilia and eosinophilia recruitment into the airways of HDM-induced mouse models. Additionally, the balance between Tregs and Th17 cells was significantly improved in groups treated with IL10-AMNP. Conclusion: This study demonstrated that PLGA nanoparticle cores coated with alveolar macrophage cell membranes can effectively deliver therapeutic cytokines to the lungs and improve the homeostatic balance between Tregs and Th17 cells. These findings suggest that macrophage-based nanoparticle drugs represent a promising approach for treating allergic airway diseases.


Assuntos
Asma , Nanopartículas , Hipersensibilidade Respiratória , Animais , Camundongos , Asma/metabolismo , Membrana Celular/metabolismo , Citocinas/metabolismo , Dermatophagoides pteronyssinus , Inflamação/metabolismo , Inflamação/terapia , Interleucina-10/metabolismo , Macrófagos Alveolares/metabolismo , Pyroglyphidae , Hipersensibilidade Respiratória/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Células Th2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...